INTRODUCTION

Sachin Jain

B.E. (Polymer Engineering)

Aug.94-Aug98

Maharashtra Institute of Technology, Pune, India

M.S. (Polymer Engineering)

Aug.98– Jun00

Department of Polymer Engineering, The University of Akron, Akron, OH.

NANOCOMPOSITES OF HIGH PREFORMANCE THERMOPLASTIC POLYMERS USING EPOXY AS PROCESSING AID

A Thesis Presentation by

Sachin Jain Department of Polymer Engineering University of Akron Akron, OH 44325-0301 USA

Date : 26th June,2000

ISSUES WITH HIGH PERFORMANCE POLYMERS

□ Processing temperatures are high ~ 300°C

- Nanoparticles, if compounded, may provide barrier against solvents and higher heat distortion temperatures
- Melt-mixing of nanoparticles difficult due to high temperatures and high viscosity
- Non-reactive solvents are not welcome due to extra steps in solvent removal.

WHY NANOCOMPOSITES ?

ISSUES WITH NANOFILLERS

Polymer-filler compatibility
 Aggregate formation
 Degradation due to shear heating

TYPICAL APPLICATIONS

Application area	PES (350°C) (Ultrason)	PBT (250°C) (Ultadur)	PPO (280°C) (Noryl)	PEI (350°C) (Ultem)	PEEK (390°C) (Victrex)
Automotive					
Consumer					
Electrical /electronics					
Industrial Building &construction					
Medical					
Packaging					
Hot water fittings					
Coatings					6

PES

Ultason 1010 natural, supplied by BASF

Glass transition temperature:	218 °C
Specific Gravity:	1.2-1.6
Typical processing temperature:	350 °C
Decomposition temperature:	400°C

NANOPARTICLES

□ Fumed Silica (Aerosil 90 and 200) Degussa Corps.

Property	Aerosil 200	Aerosil 90
Avg. primary particle size(nm)	12	20
Specific gravity(approx.)	2.2	2.2
Bulk density (g/CC)(approx.)	0.030	0.080
Silanol groups per sq.nm	2-3	2-3

SILANOL GROUPS PROVIDE CHANCES OF INTERACTION WITH EPOXY

HYDROGEN BONDING IN FUMED SILICA

Agglomerates of fumed silica

Hydrogen bonding between Si-OH and epoxy groups improve dispersion

EPOXY AS REACTIVE SOLVENT

	Thermoplastic polymer systems	Literature	Observation
P (1	olyphenylene ether PPE)	Meijer et al.	 reduced processing temperature better adhesion with glass and treated carbon fibers
P (1	olyethersulfone PES)	Cracknell et al. Inoue et al.	 epoxy toughening by PES regimes of phase separation
P	olysulfone (PSU)	Park et al.	 epoxy toughening reaction-induced phase separation
P (1	olyetherimide PEI)	Bucknell et al. Meijer et al. Pascualt et al.	 epoxy toughening thermodynamics of phase separation

ROLE OF EPOXY AS PROCESSING AID

Epoxy lowers the processing temperatures

Epoxy phase separates after curing to form the dispersed phase

Mechanical properties are improved/restored upon epoxy curing

Epoxy, when cured, potentially forms coating around silica particles.

OBJECTIVES

Exploit the use of epoxy to lower the processing temperatures of PES.

Use PES-epoxy system as a model to establish that epoxy can be used as dispersant of nanoparticles in high performance thermoplastic polymers.

EPOXY SYSTEM

□ Epoxy resin (DGEBA Epon 828) Shell Chemical Company

Diglycidyl Ether of Bisphenol A Epoxy

 T_g : -18°C and sp.gravity: 1.17.

□ Hardener: Diaminodiphenyl sulfone (DDS)- HT 976; Ciba Specialty Chemicals

Cure Temp,°C	Cure Time(min)
180	30
200	8
225	5

REDUCTION IN GLASS TRANSITION

Emphasis: 10-30 wt% epoxy

PROCESSABILITY IN PRESENCE OF EPOXY

Mixing torque vs. time illustrating the use of epoxy as processing aid.

EFFECTS OF MIXING TEMPERATURE AND SPEED OF MIXING

SAMPLE PREPARATION

- Samples prepared by <u>melt-blending</u>
- Epoxy and fumed silica premixed at 80-90°C for 30 min.
- Premixed fumed silica-epoxy melt-blended with PES in Brabender Plasticorder at $T=T_g + 50C$.
- Mixing time: 30 min.
- **RPM: 50-100**

- Hardener mixed for the last 5min.

TEMPERATURES FOR EPOXYCURING

Two-stage curing confirmed by light-scattering data.
 Number of smaller sized domains increases in two-stage curing.

EVALUATION OF DISPERSED MATERIALS

- Dispersion of fumed silica analyzed by SEM and TEM
- Barrier to diffusion of dichloromethane and methanol tested at room temperature
- □ Tensile and fracture strengths
- Heat distortion temperature

SEM AND TEM

TEM	SEM
Scales of individual particles	Scales of microns
Area under observation is small	Provides good picture of dispersion over large area
Staining confirmed epoxy coating	No staining needed
Distribution of size of particles cannot be characterized	Image analysis provides scale of particle segregation

SAMPLE PREPARATION FOR TEM

- Fumed silica particles can be observed without staining of samples
- Samples of 50-100 nm thickness prepared by ultra-michrotome
- Samples stained with RuO₄ for about 2-3 minutes for investigation of epoxy coating of silica particles

MUCH IMPROVED DISPERSION DUE TO EPOXY

EPOXY CURING HAS NO EFFECT ON SIZE OF SILICA PARTICLES

PES/Epoxy=80/20	PES/Epoxy=80/20	
Uncured epoxy	Cured epoxy	
Fumed silica: 2 wt%	Fumed silica: 2 wt%	
	Epoxy coated particles	

CURING HAS NO EFFECT ON PARTICLE SIZE

SUMMARY I

□ No agglomerates in presence of epoxy □ Typical dispersed particle size ~30-100 nm Epoxy coating around fumed silica particles apparent in stained samples Dispersed particles do not agglomerate due to curing of epoxy Spatial homogeneity of dispersion must be checked by SEM

ANALYSIS BY SEM

Cured samples cold fractured in liquid N₂
 Fractured surface etched in dichloromethane
 Some cured epoxy particles are lost during etching, leaving holes in the PES matrix.

SCALE OF SEGREGATION USING SEM

PES/Epoxy /DDS (80/20/1:1)
 Cured at 200°C , 1hr

SEM SHOWS GOOD QUALITY OF DISPERSION

DISPERSED PARTICLES DO NOT AGGLOMERATE DUE TO STAGED CURING

PES/Epoxy/Fumed Silica /DDS (80/20/2/1:1)

DISPERSED PARTICLES DO NOT AGGLOMERATE DUE TO STAGED CURING PES/Epoxy/Fumed Silica /DDS (80/20/2/1:1)

CHARACTERIZATION USING SEM

PES/Epoxy/Silica /DDS	PES/Epoxy/Silica /DDS
(80/20/10/1:1)	(80/20/4/1:1)
Cured at 200°C, 2hr	Cured at 200°C, 2hr
8.0k 0083 20KV 5um	х6.0К 0084 20КУ Бит

Scale of segregation by image analysis

Sample	Comp -osition	Cure conditions	Characteristic scale of segregation (µm)
PES/epoxy/ fumed silica	80/20/2/1	200°C, for 1 hour	1.355 and 2.631
	80/20/2/1	200°C, for 2 hours	2.9457 and 5.8915
	80/20/2/1	200°C, for 5.5 hours	0.8395 and 1.6791
	80/20/2/1	200°C, for 2 hours and postcured at 250°C, for 1 hour	1.1616 and 2.3233
	80/20/4/1	200°C, for 2 hours	1.1845 and 2.3691
	80/20/10/1	200°C, for 2 hours	1.4924 and 2.9849
PES/fumed silica	95/5	Mixed at 280°C, 100 rpm	1.7979 and 3.5959
	95/5	Mixed at 300°C, 50 rpm	5.6359 and 11.2719

SUMMARY II

Mixing and dispersion is good in the presence of epoxy

- Dispersion to almost individual fumed silica particles now achievable
- Coating of epoxy around silica particles apparent from TEM of stained samples

BARRIER TO SOLVENT DIFFUSION

□ Solvent molecules follow tortuous paths

□ Better if particles are platelet types

BARRIER PROPERTIES OF PES-EPOXY-SILICA SYSTEMS

- Sample specimen: Circular disk with 50mm diameter and 3.175mm thickness (ASTM D543)
- Specimen hanged in closed chamber in saturated solvent atmosphere at room T

Specimen weighed after regular intervals of time

MEASURING BARRIER PROPERTIES

Solvent uptake/weight of non-silica (i.e., polymeric) part

EPOXY-SILICA SYSTEM

Fumed silica reduced solvent uptake per unit weight of cured epoxy

% wt. gain in Dichloromethane atm. P/S

- 2 wt% fumed silica <u>reduced</u> uptake over PES
- 4 and 5 wt% silica <u>increased</u> uptake over PES
- Methylene chloride being non-polar does not get absorbed by fumed silica

AGGLOMERATES FORMED WITH 4 AND 5% FUMED SILICA DID NOT PROVIDE BARRIER TO SOLVENT DIFFUSION System:

+DDS

INCOMPLETELY CURED EPOXY INCREASES ABSORPTION

• The degree of curing in 10 and 20% epoxy cases are less than the 30% epoxy case – DILUTION EFFECTS

System:

+DDS

INCOMPLETELY CURED EPOXY INCREASES ABSORPTION

• The degree of curing in 10 and 20% epoxy cases also increases with curing but still less than the 30% epoxy case – **DILUTION EFFECTS**

FUMED SILICA FURTHER REDUCES THE UPTAKE

% wt. gain in Dichloromethane atm. P/E/S/D cured

□ fumed silica provides better barrier to CH₂Cl₂ diffusion

SUMMARY III

Fumed silica increases barrier to diffusion of methylene chloride over PES, PES-epoxy systems

Epoxy needs to be completely cured for maximum barrier properties

Thermal Properties Heat deflection temperature

Sample	Heat Deflection Temperature °C
PES	182
PES/fumed silica(100/5)	187
PES/Epoxy/fumed silica (80/20/10)	206.2
Cured at 200°C, 3hours	
PES/Epoxy/fumed silica (90/10/2)	206
Cured at 200°C, 4hours	
PES/Epoxy	176
Cured at 200°C, 4hours	

MECHANICAL PROPERTIES

Mechanical Properties
 Tensile strength
 Impact strength

✓ Fumed silica particles of almost spherical shape provides marginal improvement in mechanical properties

Effect of epoxy on tensile properties of PES

 Tensile strength decreases with increasing epoxy content

Effect of Fumed silica on tensile properties of PES

 Tensile strength decreases with increasing fumed silica content without
 epoxy

Effect of Fumed silica on tensile properties of PES in presence of

Tensile strength recovered after
curing ,even
with increasing
fumed silica
content, in
presence of
20% epoxy

epoxy

Effect of epoxy concentration with Fumed silica on tensile properties of composites

 Tensile strength recovered after curing ,even with increasing
 epoxy content,
 in presence of
 2% fumed
 silica

Breaking stress Vs samples PES/silica (80/2) + Epoxy

Impact strength of PES-Fumed silica

 Impact strength decreases with increasing fumed silica concentration

Impact strength of PES-Epoxy blend

 Impact strength decreases with increasing
 epoxy
 concentration

Impact strength of composite

 Impact strength increases with increasing fumed silica concentration

CONCLUSIONS

- Processing temperature is reduced due to addition of small amounts of epoxy
- Dispersion of fumed silica is observed to be aided by epoxy content
- Epoxy coats fumed silica particles after curing
- Epoxy may act as good dispersing agent of nanoparticles in polymers with solubility in epoxy.
- Epoxy-coated fumed silica particles reveal that nucleation of phase separation of epoxy during curing may have been triggered by polar nature of silanol groups of fumed silica
- □ HDT improved , mechanical properties showed marginal improvement.

ACKNOWLEDGEMENTS

Prof. Sadhan Jana, Dept. of Polymer Engineering, The University of Akron.

□ Prof. A.I.Isayev

Dr. Tedd Georgidias, Mr.Kung Ming Lee
 Members of Dr. Jana's research group
 All the faculty members and colleagues