

Photo-polymerization induced phase separation and morphology in the blends of photocurable/linear thermoplastic polymers.

Sachin Jain

Dutch Polymer Institute/ Eindhoven University of Technology Eindhoven

technische universiteit eindhover

TU/e

Objective

- Effect of photo-polymerization on phase separation
- Influence of processing conditions (viz. temperature, concentration etc.)
- Development of controlled morphology
- Improvement in mechanical properties
- Processing-Structure-Property-Application relationship

Why?

- Photo polymerization is rapid yet cold curing
 process
- Easy and independent control over various processing parameters.
- More control over phase structures
- Strong potential for nano-composites.

-Annealing

-Freezing-in the morphology

- Second stage photo-curing
 - increase in conversion

What?

• Development in morphology

- -SEM
- -TEM
- -DSC/DMTA

•Effect of

-chemical composition-Annealing temperature

On

Morphology Optical properties. Curing temperature Post-curing

Mechanical properties

Materials

• Photocurable monomer :

- 2,2-Bis(4-(acryloxy diethoxy)phenyl propane (BPE4)
•Supplied by Daiichi Seiyaku Kougyo Co. Japan

•Photo initiator

-1-hydroxycyclohexylphenyl ketone(HCPK, Irgacure 184)

•Supplied by Ciba specialty chemicals

•Linear thermoplastic polymer

-Polysulfone (Udel P-307)

•Supplied by Amoco Chemicals.

TU/e

Chemical Structure of Materials

2,2-Bis(4-(acryloxy diethoxy)phenyf)propane (BPE4)

1-hydroxy cyclohexyl phonyl ketone (HCPK)

Photo-polymerization

First stage curing:

• 2wt% (0.5 mol%) HCPK was added in BPE4, BPE4/HCPK(98/2 w/w)

•Blends with various compositions

-Viz. for 1:1 blend, BPE4 (5g, including 2% HCPK) and PSU (5g) were dissolved in dichloromethane (80g)

-Solvent cast on glass slide to make films and kept in petri dish at RT overnight.

-Then dried in vacuum oven at 50C for 3 hrs.

Films were then heated at desired temperature and irradiated with ultraviolet(UV) light (intensity at surface ca 10mWcm-2, at 365 nm) for 90-120 sec using high pressure Hg-lamp under nitrogen atmosphere
Films were transparent and homogenous after first step curing

Phase structure depending on polymerization conditions

- •BPE4/PSU system prepared by photopolymerization with light intensities
- (\diamond) 1mW cm⁻², (\blacksquare) 10mW cm⁻², (o)75mW cm⁻²
- •(•) T_g BPE4-monomer and PSU homogeneous mixtures (T_{go})

T_{bi} is the curing temperature at which the network like bi-continuous phase separated structure appeared

Network-like bi-continuous morphology of BPE4/PSU

BPE4/PSU (9/1 w/w) cured at 120°C with a light intensity of 10mW cm⁻² (a) SEM image and (b) TEM image, in which PSU was etched out with dichloromethane

0/02/0000

DAINIPPON INK & CHEMICALS

Morphology of BPE4/PSU depending on cure temperature

(a) Cured at 25°C

(c) Cured at 180°C

(b) Cured at 120°C

SEM micrographs of fractural surfaces after tensile test for BPE4/PSU (5/5 w/w)

TU/e

Mechanical properties of BPE4/PSU depending on cure temperature

Top:

() blend films of BPE4/PSU (5/5 w/w)
(°) cured neat BPE4

Bottom: BPE4/PSU (5/5 w/w) (1) 25°C; (2)50 °C; (3)80 °C; (4)100 °C; (5)120°C; (6)150°C; (7)180°C; (8)210 °C.

10

20

Strain (%)

30

40

0

0

TU/e

Mechanical properties of BPE4/PSU depending on composition Effect of cure temperature

90 Strength (MPa) 202 30 50 100 0 PSU (wt%)

Top:Blends of BPE4/PSU First step cure temperatures:

1.(Δ) optimum cure temperature (vague structure) 2.() below Tgs of the homogenous mixture of BPE4 monomer and PSU (semi-IPN structure) 3.(\blacklozenge) temperature +30°C at which network-like structure become clear.

Bottom TEM images of BPE4/PSU:

- 10wt% PSU cured at 80°C. (a)
- (b)30wt% PSU cured at 110 °C

(a)

0/22/2002

(b)

TU/e

Mechanical properties of BPE4/PSU depending on irradiation intensity Effect of comp./temp:

150

Top:Blends of BPE4/PSU (90/10 w/w) (◊) 75 mW cm⁻² 1. () 10 mW cm^{-2} 2. (Δ) 1 mW cm⁻² 3.

Bottom: BPE4/PSU blend films cured at optimal cure temperature:

- (\diamond) 75 mW cm⁻². (a)
- () 10 mW cm^{-2} (b)

0/02/0000

Effect of annealing

- Necessity of annealing
- Effect of annealing on morphology
- Effect of annealing on blends with semi-IPN structures
- Improvement in mechanical properties

Effect of annealing on morphology

Why first step curing is necessary?

Annealed at 180 °C for 3 hrs and cured at 150 °C for 3 min with 75 mW cm⁻²

First step cured at : RT, 50 mW cm⁻², 2min Annealed at 180 °C for3 hrs and post cured at 150 °C with 75 mW cm⁻², for 3min

technische universiteit eindhoven TU/e

Annealing:

Effect of annealing on morphology

Why annealing is necessary?

First step cured at : RT, 30 mW cm^{-2} , 2min No annealing and post cured at 150 °C with 75 mW cm⁻², for 3min

First step cured at : 80 °C, 30 mW cm⁻², 2min Annealed at 180 °C for3 hrs and post cured at 150 °C with 75 mW cm⁻², for 3min

Effect of annealing on morphology

TEM images for BPE4/PSU blends after annealing

(a) annealed at 80°C

(b) annealed at 150°C

(c) annealed at 200°C

The blend films with semi-IPN structure were prepared by curing below T_g , and then annealed and further photo cured at optimal temperature for 90 sec. with 75 mW cm⁻² intensity

Effect of annealing on morphology

Schematic phase morphology induced by annealing from semi-IPN structure

The white part is the BPE4-rich phase, while the dark part is the PSU-rich phase

0/12/2002

Effect of annealing on phase separated structures

IV: PSU-rich domain structure

III: Interconnected structure

II: BPE4-rich domain structure

Ib: phase separated semi-IPN structure

Ia: miscible semi-IPN structure

Effect of annealing on mechanical properties

Effect of annealing temperature on: (a) tensile strength, (b) modulus and (c) conversion of BPE4 in the blends of BPE4/PSU (5/5 w/w).

The blend film with semi-IPN structure was prepared by curing below T_g , and then annealed at the optimal annealing temperature for 1 hrs. The annealed films were additionally photo cured at optimal temperature for 90 sec. with 75 mW cm⁻² intensity

tedmische universiteit eindnoven

Annealing:

TU/e

Effect of annealing on mechanical properties

Effect of comp./cure temp

Effect of annealing temperature on (a) tensile strength, (b) tensile modulus for BPE4/PSU

The first step cure temperature was -5° C for 30(0) and 40 (\Box) wt% PSU and 24°C for 60(\Diamond) and 70 (Δ) wt% PSU.

The post cure temperatures were130°C for 40 wt%, 160°C for 60 wt%, and 180°C for 70wt%

Conclusions

- Photo-polymerization induces Phase separation in blends
- Step process of photo-polymerization helps in improving mechanical properties
- Various factors affects morphology of phase separated blends
 - ✓ Curing temperature
 - ✓ Intensity of UV-light -
 - ✓ Composition of blends
- Annealing proves to be an important step for property enhancement
- Three step process : First step cure, second step annealing and third step post-curing gives bi-continuous morphology with improved mechanical properties.

Acknowledgments

Dr. Takanori Anazawa,

Director, Kawamura Institute of Chemical Engineering, Dainippon Ink and Chemicals Inc. Sakura, Japan

Dr. Kazutaka Murata,

Manager, Kawamura Institute of Chemical Engineering. Dainippon Ink and Chemicals Inc. Sakura, Japan

Dr. Sadhan C. Jana,

Asst. Professor, Department of Polymer Engineering, The University of Akron, Akron, OH, USA

Eindhoven University of Technology, Eindhoven, The Netherlands.

